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Abstract
Exosomes are nanoscale extracellular vesicles that are shed from different cells in the body. Exo-

somes encapsulate several biomolecules including lipids, proteins, and nucleic acids, and can

therefore play a key role in cellular communication. These vesicles can be isolated from different

body fluids and their small sizes make them attractive in various biomedical applications. Here, we

review state-of-the art approaches in exosome isolation and purification, and describe their poten-

tial use in cancer vaccines, drug delivery, and diagnostics.
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1 | INTRODUCTION

Communication between cells is a critical process that occurs in all

organisms. This sharing of information is facilitated either horizontal

gene transfer by viruses1 and bacteriophages2 or by the secretion of

soluble factors.3 Cells secrete extracellular vesicles (EVs), namely, apo-

ptotic bodies, microvesicles, and exosomes,4 which can have significant

impact on the local microenvironment as well as on distant tissues in

the body.5 Apoptotic bodies are the largest among EVs, with sizes

ranging from 50 to 5,000 nm, and contain DNA, RNA, and histone pro-

teins. Apoptotic bodies are eventually removed by macrophages.6,7

Microvesicles (50–1,000 nm) are generally smaller than apoptotic

bodies and are also known as shedding vesicles or exovesicles. Exo-

somes (30–120 nm; Figure 1),8 are the smallest among secreted

vesicles, and consist of a lipid bilayer membrane that surrounds cytosol

and other contents. Exosomes derived from human embryonic kidney

cells have been observed to shrink in size when stored under 48C tem-

peratures.9 Exosomes typically do not contain cellular organelles but

can carry different molecular constituents, including proteins and

nucleic acids, from the cell of origin.10 Proteins including those from

the tetraspanin family (CD9, CD63, CD81, and CD82), ESCRT complex

(TSG101, Alix)11 and heat shock proteins (Hsp 60, Hsp70, Hsp90) are

known to be found in exosomes; the composition of these proteins dif-

fers based on the cell or tissue of origin.12,13

Vesicles secreted by cells can meet one of the following fates: (a)

internalization by other cells in the immediate proximity, (b) internaliza-

tion by cells at a significant distance away from the cell of origin, and

(c) removal by distant tissues following entry into systemic circula-

tion.14 Exosomes carry proteins and nucleic acids from their cell of ori-

gin,15 and these contents can be delivered to a different recipient cell

leading to intercellular communication that can impact different physio-

logical process.5,16,17 Western blotting18–24 and fluorescence-activated

cell sorting analysis22,25–27 of beads coated with exosomes have helped

determine the presence of known cellular proteins in exosome prepara-

tions from different cells. In addition, mass spectrometry can be

employed to identify unknown cellular proteins present in

exosomes.27–30 Exosome-facilitated messages can regulate cellular

growth, division, and apoptosis;31,32 changes in gene expression in
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recipient cells can be induced following delivery of multiple miRNAs by

exosomes.33 For example, exosomes derived from three different mela-

noma cell lines, while being morphologically very similar, had different

effects on T-cell proliferation/growth suppression.34 In this review, we

first discuss cell sources that have been explored for obtaining exo-

somes and isolation methods that have been employed for obtaining

enriched populations of these vesicles. We also discuss the use of exo-

somes as therapeutic carriers, disease biomarkers, and vaccines.

2 | CELL SOURCES FOR EXOSOMES

Cell lines including bEND3 and EL-4 are predominantly used for isola-

tion of exosomes used in drug delivery due to the ease of their avail-

ability, the ability to scale up and the ability to generate exosomes of

similar quality.35,36 Mesenchymal stem cells or hESC-MSCs are also

excellent sources for isolation of exosomes,37 and it has been observed

that exosomes isolated from these are tolerated well by the immune

system thereby making them an excellent choice for drug deliv-

ery.15,38,39 These cell lines can also be used to isolate exosomes for the

purpose of developing anti-cancer vaccines. It is possible that primary

cells isolated from patients/mice for developing these exosome-based

anti-cancer vaccines might demonstrate a batch to batch variation in

strength of the immune response.20,40 The use of exosomes for identi-

fying biomarker levels mandates that patient-derived cells/body fluids

are used. The presence/absence of disease can be determined by com-

paring exosomal biomarker levels of the patient with that of healthy

controls.41–45

3 | ISOLATION AND PURIFICATION OF
EXOSOMES

Several methods have been investigated for the isolation and purifica-

tion of exosomes from biological fluids.46,47 Centrifugation, filtration,

immunological separation, microfluidic isolation,48 and size-exclusion

chromatography can be effectively applied in both laboratory research

and clinical medicine. Differential ultracentrifugation remains one of

the most common techniques for exosome isolation49–51 and consists

of several centrifugation steps that remove cells, large vesicles, and

debris at lower centrifugation speeds. The pellets are discarded while

the supernatant is subjected to higher centrifugation speeds in order to

obtain exosomes as a pellet. Differential ultracentrifugation is com-

monly employed for the isolation of exosomes but the efficiency of the

method is lower when plasma and serum are used due to higher viscos-

ities of these fluids.24,47,52 Density gradient centrifugation combines

differential ultracentrifugation with a sucrose density gradient. This

method is mainly used for separating exosomes from nonvesicular par-

ticles including proteins and protein/RNA aggregates. The method

allows separation of low-density exosomes from other contaminants

but is highly sensitive to the centrifugation time.24,52,53

Specific binding of antibodies to receptors present on the surface

of exosome have been explored for isolating these vesicles from mix-

tures54,55; in many cases isolated exosomes are subsequently analyzed

for DNA or total RNA.56–60 As an application of this approach, antibod-

ies are displayed onto magnetic beads to facilitate the specific binding

and isolation of exosomes.61,62 The advantage of this immunoaffinity

technique is the presence of various tetraspanins on exosomes isolated

from different cell types which can be targeted using antibodies. The

immunoaffinity technique employed was reported to be more effective

at isolating exosomes compated to ultracentrifugation and density gra-

dient methods.53,63 This method can be extremely effective for small-

scale applications with low volume samples but the costs associated

with scaling up this approach may be prohibitive for large scale isola-

tion procedures.

Ultrafiltration has been investigated for the separation of exosomes

from proteins,39,64,65 although the efficacy of this method has not been

fully established for clinical samples. A porous membrane can be used

for trapping exosomes resulting in their isolation from cell culture media.

The filtration membrane helps concentrate the exosomal population.

Recovery of exosomes from the membranes is facilitated by using etha-

nol or NaOH, which is typically followed by rinsing with phosphate-

buffered saline.24 However, application of large external force in this

approach can result in deformation or damage of exosomes.

Polymer-facilitated precipitation, most commonly using polyethyl-

ene glycol, is also employed for recovering exosomes from mixtures

(Figure 2).66,67 The main advantage of this method is the use of neutral

pH. Although, there are no adverse effects on the isolated exosomes,

contamination of exosomes with other nonexosomal materials is a sig-

nificant drawback of this method.68 In addition, the presence of the

polymer may interfere with downstream analyses and/or usage.69

Polymer-facilitated precipitation can be significantly improved by using

methods for removing the polymer used in the operation. Size-

exclusion chromatography is commonly used to separate macro-

molecules based on size,70 and has also been investigated for exosome

isolation (Figure 3).71,72 Exosomes isolated using this method are sub-

jected to minimal shear force, resulting in relatively low damage to the

structure of these vesicles; however, deformation of larger vesicles has

been reported.73

FIGURE 1 Schematic showing the release of exosomes and other
vesicles from cells. Adapted from Ref. 8
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Exosomes isolated using ultracentrifugation—for example, using

the ExoQuick approach—can result in increased yields compared to

other methods, while also maintaining the quality of the exosomes

isolated.24 The swift isolation and higher exosome recovery enables

analysis of protein expression in the recovered exosomes. Ultracentri-

fugation with density gradient centrifugation can improve the efficacy

of the exosome purification without damaging the morphology. Varia-

tions in sizes of isolated exosomes have also been observed between

fresh samples and those stored in DMSO and freezing also resulted in

degradation of exosomal RNA over time.74

4 | APPLICATIONS OF EXOSOMES

4.1 | Drug and nucleic acid delivery

The small sizes of exosomes make them attractive as vehicles in drug

and nucleic acid delivery, although detailed molecular characterization

of exosomes is necessary before adopting them in widespread applica-

tions. Yang et al. hypothesized that exosomes derived from brain cells

displayed brain-specific surface proteins which allowed them to pass

through the blood-brain barrier (BBB) and deliver drugs across this bar-

rier.35 Exosomes were isolated from four different cell lines including

brain endothelial cell line bEND.3, human glioblastoma cell line U-

87 MG, human brain neuroectodermal cell line PFSK-1, and human

brain glioblastoma A-172 cells. Rhodamine-123 (2 mg/ml), doxorubicin,

or paclitaxel were independently loaded into different exosomes by

mixing followed by incubation for 2 hr. Doxorubicin-loaded exosomes

demonstrated higher efficacies for inducing death in U87-MG glioblas-

toma cells compared to paclitaxel-loaded exosomes. Exosomes isolated

from bEND.3 cells were able to deliver the rhodamine-123 dye across

the BBB following delivery via the cardinal vein of zebrafish embryos.

Exosomes from bEND.3 cells were able to deliver drugs to a U-87 MG

tumor grown in the brain of zebrafish and were also observed to inhibit

VEGF (vascular endothelial growth factor) levels in vivo (Figure 4).35

This, in turn, was able to induce a significant decrease in the tumor

size, compared to treatments with the free drug. Intranasal delivery of

curcumin or JSI-124 (cucurbitacin I) inhibitor-loaded exosomes was

investigated as a potential therapeutic approach for brain inflammatory

diseases.75 Three different mouse models exhibiting lipopolysaccharide

(LPS)-induced brain inflammation, autoimmune encephalatis, or the

GL26 brain tumor model which exhibits inflammation due to infiltration

of immune cells including macrophages and T-cells, were used in the

study.76 Exosomes were loaded by mixing curcumin with EL-4 (mouse

lymphoma cell)-derived exosomes at a temperature of 228C after which

the loaded exosomes were separated using sucrose gradient centrifu-

gation. Intranasally delivered exosomes were taken up by microglial

cells, which are key mediators in neuro-inflammatory diseases; delivery

of curcumin-loaded exosomes resulted in a reduction in activated

microglial cells in both encephelatis and LPS-induced brain inflamma-

tion models. Intranasal delivery of exosomes loaded with the STAT3

inhibitor JSI-124 resulted in increased survival of mice with GL26 brain

tumors. This study suggests that intranasal delivery of exosome-

FIGURE 2 Schematic of the polymer-based precipitation method used for the isolation of exosomes. Adapted from Ref. 54

FIGURE 3 Schematic of the size-exclusion chromatography
approach employed for the isolation and purification of exosomes.
Adapted from Ref. 58
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encapsulated drugs could lead to a noninvasive approach for direct

drug delivery to the CNS.75

Exosomes isolated from RAW264.7 macrophages were loaded

with catalase as a potential therapeutic approach for Parkinson’s dis-

ease; catalase was loaded in order to potentially degrade reactive oxy-

gen species in order to protect from inflammation.77 Exosomes were

loaded using four different methods—incubation with saponin, sonica-

tion, freeze-thaw, and extrusion. Sonication-loaded exosomes resulted

in the highest uptake of catalase in PC12 neuronal cells in vitro as

observed using fluorescence spectroscopy and confocal microscopy.

Sonication was carried out using 20% power at 500V, 2kHz for 6

cycles pulsed for 4 s on and paused for 2 s. Extrusion was also

employed for loading, and was performed by mixing catalase with exo-

some solution followed by 10 rounds of extrusion through a Avanti

Lipids extruder.78 Catalase-loaded exosomes, named exoCAT, pro-

tected neuronal cells from oxidative stress in vivo following intracranial

injection into C57BL/6 mice. Biodistribution of exoCAT following intra-

cranial injections indicated localization primarily in neuronal and micro-

glial cells but also in astrocytes and endothelial cells.

Exosomes extracted from cow milk were employed for the delivery

of therapeutic molecules against lung and breast cancer.79 Exosomes

loaded with withaferin-A were injected intraperitoneally into female

athymic nude mice subcutaneously injected with A549 cells. A tumor

inhibitory effect was observed with withaferin-A loaded exosomes at

doses lower than those observed with the unencapsulated drug.

Exosomes isolated from dendritic cells from the bone marrow of

C57BL/6 mice were employed for delivering small interfering RNA

(siRNA) to the brain. A Rabies viral glycoprotein (RVG) peptide (single

letter amino acid sequence: YTIWMPENPRPGTPCDIFTNSRGK-

RASNG) was displayed onto the exosomal surface for targeting the

acetylcholine receptor in the brain. Electroporation at 400 V and 125

lF was used to load these exosomes with siRNA against GAPDH, and

the loaded vesicles were employed to investigate the knock down of

GAPDH gene in C2C12 (murine muscle) and Neuro2A (neuronal cells).

Gene knockdown efficacy using exosomes loaded with GAPDH siRNA

was similar to that observed using lipofectamine. Exosomes were also

well tolerated and did not induce strong immune responses in C57BL/

6 and BALB/C mice. RVG exosomes were also able to deliver BACE1

siRNA across the BBB.80

Exosomes derived from human bone marrow mesenchymal stem

cells were investigated for delivering functional anti-miR-9 to glioblas-

toma multiforme cells81; communication between MSCs and brain glio-

blastoma cells can be mediated by exosomes.82 Flow cytometry and

quantitative PCR (qPCR) indicated that MSC-derived exosomes, loaded

with anti-mir9, led to the reduction of MDR1 expression in T98G and

U87 glioblastoma cells. Delivery of anti-mir9 increased the sensitivity

of these cells towards temozolomide, resulting in increased cancer cell

death.81

Strategies for loading molecular cargo in exosomes and related

efficacies differ based on the chemistry of the loaded molecule. The

most common method for loading small-molecule drugs involves mix-

ing the drug solution with a suspension of exosomes and incubating

them at 25–378C. The drug loading efficiency is typically determined

using liquid chromatrography.83,84 Loading of DNA onto exosomes

using electroporation methods is likely restricted by the size of the

exosomes with only large exosomes being capable of carrying large lin-

ear/plasmid DNA85 The loading efficiencies achieved using electropo-

ration varied between 15 and 30% of those achieved with small

molecule drugs and siRNA,86,87 Momen-Heravi et al. were able to

achieve up to 55% loading efficiency using electroporation for miRNA

molecules.88 Smyth et al. achieved doxorubicin loading efficiencies of

5% by weight of exosomes using the mixing technique.89 Similarly, Sun

et al. observed a binding capacity of 2.9 g of curcumin for every gram

of exosome using the mixing technique followed by sucrose density

gradient centrifugation.36 Kim et al. compared different techniques that

is, mixing incubation, electroporation, and sonication for loading the

drug paclitaxel into exosomes and observed 1.5, 5, and 29% loading

efficiencies, respectively.90 In comparison, Yang et al. were able

achieve 5% loading efficiency of siRNA in cationic lipopolymers with

an encapsulation efficiency of 70%.91 and Cao et al. obtained 33%

loading efficiency in calcium phosphate nanoparticles.92

Taken together, these studies indicate the potential utility of exo-

somes in drug and nucleic acid delivery. The choice of cells from which

exosomes are isolated, yield of exosome vesicles, cargo loading proce-

dures, selection of targeting biomolecules (e.g., peptides) on the sur-

face, biodistribution, and immune response are key factors for

consideration for exosome-mediated delivery in future translational

applications. Loading of small-molecule drugs can be efficient, although

there is room for improvement in case of loading DNA/siRNA.

5 | BIOMARKERS

Exosomes play a vital role in cell-cell communication by directly engag-

ing with surface ligands and/or by transferring their contents between

FIGURE 4 In vivo delivery of doxorubicin (Dox)-loaded exosomes
across the blood brain barrier in zebrafish model. Significant
inhibition of VEGF was observed in Dox-loaded exosomes com-
pared to untreated controls and those treated with unencapsulated
doxorubicin. Adapted from Ref. 35
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cells.93–96 Presence of exosomal RNA was implicated as evidence for

horizontal transfer of genetic information between various cell

types.97–99 Exosomes are thought to also transfer cellular mRNA as

well as microRNA which indicates that tumor exosomes are functional

and could suppress mRNA that codes for signal transduction compo-

nents within T-cells.100,101 The RNA population in tumor-secreted exo-

somes includes microRNA and it is possible that this exosomal

microRNA reflects the parental tumor signature. As a result, microRNA

expression profiling can be useful as a diagnostic tool in diseases,

including some cancers which lack definitive molecular biomarkers.

Exosome levels can be slightly elevated in benign tumors and

highly elevated in cancerous patients as compared to normal controls;

exosomes were isolated from the sera of patients/control subjects

using magnetic activated cell sorting. Approximately, 175 different

miRNA were found to be similar between tumor cells and exosomes.

The up-regulated miRNA profile from exosomes also matched up-

regulated miRNA profiles in ovarian cancer patients at different stages

of the disease. However, this approach was not able to distinguish

between different stages of cancer.102–105 Expression of miRNA in cir-

culating tumor-derived exosomes derived from lung adenocarcinoma

patients were similar to that seen in primary tumors, indicating the

potential use of these tumor-derived exosomes as biomarkers. In the

future, it may be possible to analyze miRNA from circulating exosomes

obviating the need for, or at least complementing, tumor biopsy sam-

ples10 in applications related to detecting disease, monitoring response

to therapy, and investigating cancer recurrence.

The mRNA expression of two distinct biomarkers, PCA-3 and

TMPRSS2, is found in exosomes and can be used to provide a direct

link to the incidence of prostate cancer.106 Proteins extracted from uri-

nary exosomes can be of potential use in diagnostics of urinary tract

diseases,45 and prostate and bladder cancers. Eight urinary exosomal

proteins were identified as biomarkers when patients with prostate,

bladder cancer cells, and healthy cells were compared.107 It has been

reported in many cases that exosomal miRNA are prospective bio-

markers for renal fibrosis and cardiovascular diseases.108–110

Potential advantages of using exosomes as biomarkers includes

the ability to reduce the use of invasive surgery for monitoring disease.

Exosomes can be isolated from serum samples and have been

FIGURE 5 miRNA biomarker expression levels in tumor and exosome-derived samples showing comparable levels of miRNA between the
two sample types. Adapted from Ref. 104
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successfully used for biomarker detection in ovarian, lung and pancre-

atic cancers.111–113 Exosomal miRNA has also been found to be useful

in distinguishing between pancreatic carcinomas from benign pancre-

atic tumors and chronic pancreatitis113 and in detection of miRNA

(miR-34A) responsible for conferring drug resistance to prostate can-

cer.41 Exosomal miRNA appear to be stable and can undergo multiple

freeze-thaw cycles, variations in pH and heating without undergoing

degradation or loss of expression levels; the miRNA profile is also

highly specific to cancer/tumor tissue.113 However, a key drawback of

using exosomes as biomarkers markers is that they cannot determine

the severity of the disease because the miRNA levels can be identical

during different stages of the disease as shown by Taylor et al. for

ovarian cancer and Rabinowitz et al. in the case of lung cancer.104,112

The potential of using exosomal markers for clinical diagnostics needs

to be further investigated in depth because various exosomal compo-

nents including lipids, proteins and miRNAs can be promising in disease

diagnostics.

6 | ANTICANCER VACCINES

Exosomes derived from specific sites in the body can be promising can-

didates for anti-cancer vaccines since they can present antigens against

that specific type of cancer. Exosomes can be isolated from three sites

of origin ascites (ascite-derived exosomes or AEX), dendritic cells (den-

dritic cell-derived exosomes or DEX), and tumors (tumor-derived exo-

somes or TEX).114–117 The antigens in these exosomes can elicit an

immune response via MHC class I or class II molecules on CD81 or

CD41 T cells. These exosomal MHC class I/II molecules on exosomes

are likely used for communication with specific cell types.118,119 Mela-

noma antigens in DEXs were used to prime cytotoxic T lymphocytes in

order to elicit an immune response through the Mart1 specific pathway

in patients with high-grade melanoma.21,120 In a different study, exo-

somes were isolated from four different pancreatic cancer cell lines,

SOJ-6, BxPC-3, MiaPaCa-2, and Panc-1. Exosomes derived from SOJ-6

and BxPC-3 cells were more effective at reducing growth human pan-

creatic adenocarcinoma cells compared to those derived from

MiaPaCa-2 and Panc-1 cells; regulation of Hes-1 protein via downregu-

lation of the Notch-1 signaling pathway and activation of

mitochondria-dependent apoptosis pathway played a key role in the

cell ablation efficacy.121

Dendritic cell-derived exosomes were shown to elicit Natural Killer

(NK) cell responses following intradermal injection in C57BL/6 mice.

Exosomes isolated from normal volunteers were primed with mela-

noma associated antigens MAGE3.A1 and MAGE3.DP04, and were

used as vaccines in stage IIIb and stage IV melanoma patients. The

treatment resulted in a regression of the cancer; while no changes in

cytotoxic T-lymphocyte levels were observed, the level of NK cell

increased with treatment. However, the NK cells obtained from

patients that responded to the DEX treatment were more effective at

killing K562 cells in culture compared to those obtained from

nonresponders.115,122

These studies indicate potential applications of exosomes in cancer

immunotherapy. However, exosomes generally need mature DCs to

elicit a T-cell response, since antigens present on exosomes need to be

taken up by the dendritic cells before they can activate T-lymphocytes.

This can be avoided by the use of adjuvants in some cases, which can

allow exosomes to directly prime T-lymphocytes. In addition, the reli-

ance on an intact immune system can restrict their use in

FIGURE 6 miRNA profile comparison between tumor and circulating exosomes. Adapted from Ref. 104
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immunocompromised or immunosuppressed patients. However, this

approach can elicit an immune response in already developed cancer

which can induce regression of the tumor.122 This approach may also

find less resistance from the suppressive nature of the tumor

microenvironment,116,117,122–126 which can be a significant advantage.

7 | FUTURE DIRECTIONS

The potential for exosomes in the field of drug delivery is significant

owing to their ability to selectively express proteins like tetraspanins

which may allow for cell targeting. It will be necessary to obtain highly

pure formulations of exosomes with low amounts of protein aggre-

gates and other microvascular particles. Optimization of ultracentrifu-

gation coupled with density gradient centrifugation may offer one

route toward obtaining enriched populations of exosomes. Further

advancements that enhance the loading of drug/nucleic acid are neces-

sary for effective delivery of these therapeutic molecules. Improve-

ments in analytical methods and advances in biomarker discovery can

facilitate the use of exosomes in disease detection.

8 | CONCLUSIONS

Exosomes are starting to gather attention in cancer therapeutics and

diagnostics, with several applications in drug delivery, tumor

FIGURE 7 Interactions of dendritic cell-derived exosomes and tumor-derived exosomes with inflammatory cells. Reproduced with
permission from Creative Commons. Adapted from Ref. 117
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immunotherapy, and diagnostic biomarkers. Their unique strengths

include enhanced passive targeting due to small size, indigenous

nature, and the ability to cross biological barriers. However, the cum-

bersome nature of the methods required for isolation/purification,

inability to distinguish between different cancer stages, and incomplete

understanding of their impact on the immune system are some of the

current limitations with this technology. It is anticipated that sophisti-

cated engineering and detailed clinical studies that address these limita-

tions will lead to the translation of exosome-based technologies in the

future.
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